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Abstract. Using density based perturbation theory [M.K. Harbola, A. Banerjee, Phys. Lett. A 222, 315
(1996)], we calculate the static hyperpolarizabilty γ for spherical atoms and ions from their ground-state
densities. Since densities are being employed, calculations are performed using approximate functionals for
the kinetic and the exchange-correlation energies. Use of densities - instead of the wavefunctions or Kohn-
Sham orbitals - reduces the computational effort substantially. The results obtained are within 5%−15%
of those calculated from the corresponding orbital-based calculations.

PACS. 31.15.Ew Density-functional theory – 31.15.Md Perturbation theory – 32.10.Dk Electric and
magnetic moments, polarizability

Application of a strong electric field E to an atom or an
ion induces in it a dipole moment p with
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1
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where α is the dipole polarizability and the nonlinear coef-
ficiants β and γ are called the first and second hyperpolar-
izabilities of the system. The nonlinear response of the sys-
tem gives rise to interesting effects [1] such as second-and
third-harmonic generation, intensity dependent refractive
index etc. Induced moment is accompanied by a corre-
sponding shift
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in the energy of the system. For the spherical atoms and
ions considered in this paper β = 0, and there is only one
independent component [2] of α and γ so that equations
(1) and (2) can be written simply as

p = αE +
1

3!
γE3 (3)

and
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1
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24
γE4. (4)

From now on we are going to concentrate on spherical
systems only. The induced dipole moment is a measure
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of the distortion caused by the applied field. It can be
calculated from the electronic density as

p =

∫
z∆ρ(r)dr (5)

where ∆ρ(r) is the change in the density when the atom
is in a field in z direction. ∆ρ(r) in turn is calculated from
the induced wavefunctions to appropriate orders by em-
ploying perturbation theory [3]. This leads to α and γ via
equation (3). Alternatively, perturbation theory also gives
the energy change ∆E, and α and γ can be obtained from
this quantity by equation (4). The latter scheme is easier
because of the variational principle for the energy and the
(2n+ 1) theorem [4] of perturbation theory. According to
the (2n+1) theorem, the energy to order (2n+1) is given
by wavefunctions correct up to order n only. Thus if equa-
tion (4) is used to calculate α or γ, wavefunction only up
to order 2 is required. On the other hand, wavefunction
up to order 3 is needed if equation (3) is to be used.

We have recently developed [5] density based pertur-
bation theory within the framework of Hohenberg-Kohn
density-functional theory (DFT) [6,7] for many-electron
systems. In this theory the induced densities and change
in the energy to any order are calculated from the unper-
turbed ground-state density. Since exact form of the total
energy functional is not known, density-based perturba-
tion calculations can be performed only approximately.
The purpose of this paper is to demonstrate - against the
background of well studied atomic systems - that, with
appropriately chosen functionals, reasonable estimates for
non-linear response properties of a system can be obtained
from its ground-state density. Thus the theory would
be particularly useful for calculating approximately the
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response properties of systems for which orbital-based
calculations may not be easy to perform. We note that
density-based calculations for linear response have been
performed [8] earlier. However, going beyond it to non-
linear regime has become possible only now after the de-
velopment of density based variation-perturbation theory
[5].

In density based perturbation theory, energy to order
(2n + 1) is determined by the perturbation expansion of
the density correct to order n only. Further, the even-
order energy correction E(2n+2) is minimum for the exact
induced density ρ(n+1), if expansion up to order n is known
exactly. For details of the theory, we refer the reader to
reference [5]. It is sufficient to note here that α and γ

are calculated from the second-order energy ∆E(2) and
the fourth-order energy ∆E(4) by employing equation (4).
These energy changes are in turn obtained variationally
by minimising
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∫
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with respect to ρ(2). Here v(1)(r) is the applied (exter-
nal) perturbation. F [ρ] is the sum of the kinetic, Hartree
and the exchange-correlation energy (Eqs. (10), (11) and
(12) below) of the electrons; It is a universal functional of
the density. All the functional derivative in the equations
above are evaluated at the ground state density ρ0. The
variational ansatz for ρ(1) and ρ(2) is

ρ(1)(r) = ∆1(r) cos θρ0(r),

ρ(2)(r) = [∆2(r) +∆3(r) cos2 θ]ρ0(r) + λρ0(r) (8)

where

∆i(r) = air + bir
2 + cir

3

+dir
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5 + · · · , i = 1 · · · 3 (9)

with ai · · · ei · · · being the variational parameters. λ is
fixed for each set of parameters by the normalization con-
dition that

∫
ρ(2)(r)dr = 0. We have used 5 parameters

for ∆1 and 7 each for ∆2 and ∆3. Adding more param-
eters does not affect the results significantly indicating
their covergence. This form of the variational densities is
motivated by the exactly known solutions [9] for the hy-
drogen atom in a static electric field. Besides its simplicity,
the ansatz above has an additional advantage that the ex-
pressions for various energy terms become quite simple.
Further, as the changes E(2) and E(4) in the energy are
being minimized individually, there is no need to apply
static finite field explicitly. This makes calculations nu-
merically accurate.

Since densities are being employed for calculations,
functional derivatives (Eqs. (6) and (7)) corresponding
to the kinetic and the exchange and correlation energies
have to be approximated; Only that corresponding to the
Hartree energy can be calculated exactly. For evaluating
the functional derivatives of the the exchange and cor-
relation energies, we use the local-density approximation
(LDA). Thus the exchange energy is given as

ELDA
x [ρ] = d0

∫
ρ

4
3 (r)dr (10)

where d0 = − 3
4 (3/π)

1
3 . For the correlation energy we use

the Gunnarsson-Lundquist parametrization [10] in which

ELDA
c [ρ] = c

∫
ρ(r)[(1 + x3)ln(1 + 1/x)

+x/2− x2 − 1/3]dr (11)

with c = −0.0333, x = rs/A, A = 11.4, where rs =

[3/4πρ(r)]
1
3 is the local rs value. On the other hand, one

has to be more judicious in the choice of the kinetic en-
ergy functional for it is a major component of the total
energy change. Functional derivatives of Thomas-Fermi or
the gradient expansion approximation (GEA) functional
cannot be employed [8] as these functionals are derived
for slowly varying densities. In contrast, the induced den-
sities are concentrated mainly on the outer regions of the
atom and tend to be rapidly varying. A kinetic energy
functional which is accurate in the outer regions of the
atoms - in fact it becomes exact asymptotically far from
the nucleus - is the von-Weizsacker functional [11]

TW[ρ] =
1

8

∫
|∇ρ(r)|2

ρ(r)
dr. (12)

The functional is also exact in the limit of one- and two-
electron systems. In addition, it has the desirable property
that it represents exactly [12] the second order change
in the kinetic energy of a homogeneous electron gas sub-
jected to a rapidly varying perturbation. Keeping all these
points in mind, it is the functional derivative of the von-
Weizsacker functional which we employ for the kinetic en-
ergy (KE). We discover that it is also a good zeroth-order
approximation to the changes up to the fourth order in
the kinetic energy when calculating the response proper-
ties. We wish to point out that the KE functional em-
ployed for perturbative calculations is different from that
used for the calculation of unperturbed density. Although
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Table 1. Polarizability α and Hyperpolarizability γ of the
noble gas atoms calculated from the Hartree-Fock densities.
Atomic units are used.

Atom α γ

Present Wavefunctionala Present Wavefunctionala

He 1.34 1.32 36.86 36.2

Ne 3.1 2.34 74.05 71.9

Ar 12.52 10.73 1393 967

Kr 18.74 16.47 1964 2260

Xe 30.71 27.08 5792 5870

a Reference [14].

for consistency it is desirable that the two functionals be
the same - it is not possible with the current knowledge
of KE functionals. Nonetheless, our results indicate that
this does not cause any problem.

In the following we present the results for α and γ ob-
tained by using the approximations described above. Al-
though our main focus is the non-linear polarizabilities of
atoms, we nonetheless include in our discussion the num-
bers obtained for linear polarizabilities also in order to
provide a complete picture.

First we calculate the response properties of the noble
gas atoms. The standard values for α and γ of these atoms
are well established. Thus the accuracy of the approxima-
tion employed can be judged well by performing calcula-
tions for these atoms. Given in Table 1 are the numbers
for the atoms He–Xe using densities obtained from their
Hartree-Fock (HF) wavefunctions [13]. Since the HF densi-
ties are obtained by neglecting Coulomb correlations, our
calculations are also performed within the exchange-only
LDA. The values obtained by us are thus compared with
the standard Hartree-Fock values [14]. As is evident, the
functionals employed are decent zeroth-order approxima-
tion for the calculation of response properties to the third
order. The values for α are relatively closer to the exact
numbers than those for γ. This shows the sensitivity of γ
towards the approximate form for the energy functionals.
The value for γ is most accurate for helium since the von-
Weizsacker functional is exact for two-electron systems.
For the rest of the atoms except Argon, values of γ are off
by about 5%−15%.

In Table 2, we present the results for α and γ of noble
gas atoms obtained from Kohn-Sham LDA (KSLDA) den-
sities. Again for helium the values of α and γ are accurate
in comparison with the values obtained from the Kohn-
Sham perturbation theory [15]. For the other atoms our
values are lower by about 20% The actual difference would
be slightly less because the reported LDA numbers [15–
17] have been obtained by Perdew-Zunger parametrization
[18] of the exchange correlation energy which gives [15]
slightly larger numbers than the Gunnarsson-Lundquist
parametrization [10] used by us. Nonetheless, the com-
parison again shows that the von-Weizsacker functional

Table 2. Polarizability α and hyperpolarizability γ of the no-
ble gas atoms calculated from the Kohn-Sham LDA densities.
Atomic units are used.

Atom α γ

Present Kohn-Shama∗ Present Kohn-Shama∗

He 1.63 1.66 82.48 88.15

Ne 3.68 3.05 164.95 210.84

Ar 13.31 12.02 1471 1858

Kr 19.50 18.04 3229 3955

Xe 30.99 28.78 7104 9160

a Reference [15].

∗ Employs Perdew-Zunger parameterization [18] of

Ceperly-Alder exchange-correlation energy.

Table 3. Experimental polarizabilities α and γ of noble gas
atoms. The static value for γ quoted are extrapolations from
finite frequency measurements. Numbers are in atomic units.

Atom αa γ

He 1.39 35.7b; 41.7c; 42.6d; 52.4e

Ne 2.67 70.3c; 95.3e

Ar 11.08 858c; 1084e; 1096d; 1251b

Kr 16.75 2073c; 2239d; 2406e; 2728b

Xe 27.29 4800c; 4812d; 5825e

a Reference [19]; b Reference [20];

c Reference [21]; d Reference [22];

e Reference [23].

employed by us is a reasonably good zeroth-order approx-
imation up to the fourth order changes in kinetic energy of
perturbed atoms. As noted, GEA would not lead to accu-
rate results for the reasons given above. For example with
HF densities, GEA up to the second order gives highly
inaccurate results of α = 4.42 a.u., γ = 10800 a.u. for He
and α = 7.82 a.u., γ = 102000 a.u. for Ne. Similar trends
are observed for the other atoms too.

For comparison, we also give in Table 3 the experimen-
tal numbers [19–23] for the polarizabilities and hyperpo-
larizabilities of these atoms. As is evident, HF values for
γ are close to the experimental values than the KSLDA
values. The latter are large by almost a factor of two. Dif-
ferences between the HF and KSLDA values arise mainly
because of different asymptotic nature of the respective
densities. In this connection, we note that the asymptotic
structure of the effective potential affects the value of po-
larizability significantly, as discussed [24] recently for the
case of linear polarizabilities; for non-linear polarizabili-
ties the difference is even more because these are highly
sensitive to the quality of the wavefunction.
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Table 4. Hyperpolarizability of some cations using Hartree-
Fock (HF) and Kohn-Shan LDA (KSLDA) ground state den-
sities. Atomic units are used.

Ion γ

HF KSLDA

Na+ 4.39 6.90

Mg2+ 0.6 0.82

K+ 85.63 116.23

Ca2+ 17.94 19.81

Rb+ 268.2 370.3

Sr2+ - 87.37

Table 5. Hyperpolarizability for H− and halogen anions us-
ing Hartree-Fock (HF) densities. Values of these quantities ob-
tained in coupled Hartree-Fock theory are given in brackets.
Experimental numbers/accurate theoretical numbers, where
available, are also given. Atomic units are used.

ION γ

HF Expt./Ab in.

H− 7.8 × 106 76.0 × 106 c

(5.98 × 106) a

F− 6691 58000

(9000) b

Cl− 2.95 × 104

Br− 4.86 × 104

I− 1.44 × 105

a Reference [27]; b Reference [26]; c Reference [25].

Having demonstrated the application of density based
perturbation theory with the aforementioned approxima-
tions, we now apply the formulation to estimate the non-
linear polarizabilities of some positive and negative ions.

Given in Table 4 are the non-linear polarizabilities
for alkali metals and alkaline earth ions employing their
HF and KSLDA densities. As in the case of noble gas
atoms, the hyperpolarizability numbers obtained from the
two densities differ - the KS densities lead consistently to
higher values than the HF densities. However, as noted
above, the HF numbers should be close to experimental
polarizabilities for these ions. To the best of our knowl-
edge, experimental numbers for hyperpolarizabilities of
these ions do not exist.

In Table 5 we give the numbers for the negative ions
of Hydrogen and Halogens using HF density. Since the
Coulomb correlation effects are relatively more important
in negative ions, the Hartree-Fock values for these cannot
be expected to be as close to the experimental values as for
neutral or positive systems. This is clear from the numbers

[25,26] for H− and F−. However it may be expected that
for anions with large Z, the numbers obtained by us will
be less off than for H− and F−.

All the results presented above are for atoms and ions
with electronic configurations similar to the noble gas
atoms. Do the approximations and variational forms of
the induced density employed also lead to similar accu-
racy for the other atoms? Our preliminary study in this
direction indicates that for atoms like Be, Mg, Ca the von-
Weiszacker functional is less accurate, giving only about
70% of the standard results.

To conclude, we have demonstrated in this paper that
densities, instead of the wavefunctions, in conjunction
with approximate energy functionals can be employed di-
rectly in perturbation theory to calculate response proper-
ties of inhomogeneous electron gas systems. This has two
advantages: (i) visualizing the density is easy and therefore
our calculations are physically transparent, and (ii) calcu-
lations in terms of density are numerically much easier to
perform than their wavefunctional counterparts. Further,
we have shown that for kinetic energy, the von-Weizsacker
functional is a reasonably good zeroth-order approxima-
tion for perturbation theory calculations up to the fourth
order. On the other hand, for two-electron systems the
functional is exact and therefore leads to results [28] which
are comparable to their wavefunctional counterparts. For
the exchange-correlation energies, LDA appears to be ac-
curate enough. This is also revealed by our exchange-only
LDA calculations. To make calculations more accurate
would require going beyond the von-Weizsacker functional
for the kinetic energy as the first step. An example of such
an extension is the functional [29] used in previous cal-
culations [8] by one of the present authors. Use of this
functional, however, makes the polarizability values accu-
rate but does the opposite for the hyperpolarizability val-
ues. We are doing investigations in the direction of find-
ing more accurate kinetic energy functionals. With the
applicability of the theory demonstrated we are also im-
plementing the present formulation to calculate response
properties of molecules. Results of these studies will be
reported in the future.
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